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ABSTRACT
Pacific Lamprey (Entosphenus tridentatus) are a native anadromous
species that, like salmon, historically returned to spawn in large
numbers in watersheds along the west coast of the United States
(U.S.). Lamprey play a vital role in river ecosystems and are one of
the oldest vertebrates that have persisted over time likely influ-
encing the evolution of many aquatic species. Pacific Lamprey
have declined in abundance and are restricted in distribution
throughout Washington, Oregon, Idaho and California. A key
uncertainty influencing Pacific Lamprey status is the impact of cli-
mate change. We modified the NatureServe Climate Change
Vulnerability Index (CCVI) to accommodate climate predictions
from the International Panel on Climate Change. Using down-
scaled information, we characterized changes in 15 rivers occu-
pied by Pacific Lamprey in the western U.S. We evaluated this risk
under Representative Concentration Pathways (RCP) 4.5 and 8.5
for two time periods (mid-century 2040–2069 and end-century
2070–2099). The CCVI scores generally increased when going
from RCP 4.5 to RCP 8.5 in three Global Climate Models for both
mid-century and end-century, which our analyses forecasts
degraded stream temperature and hydrologic conditions under
increasing greenhouse gas emissions. The geographically assessed
results suggest that climate change impacts to Pacific Lamprey
vulnerability are magnified in highly altered rivers. If we continue
to observe greenhouse gas emission levels associated with the
RCP 8.5, Pacific Lamprey will be at greater risk to climate change
impacts. In order to mitigate the risk from climate change toward
the end of the century, additional actions will need to be priori-
tized to rapidly reduce the impact of these threats such as
increasing flow, creating backwater habitat, restoring riparian
vegetation and reducing stream disturbances. The findings
revealed the patterns of vulnerability for Pacific Lamprey across
their U.S. range are informative for prioritizing river restoration
actions when paired with regional implementation plans.
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Introduction

Pacific Lamprey (Entosphenus tridentatus) are a native anadromous species that, like sal-
mon, historically returned to spawn in large numbers in watersheds along the west coast
of the United States. Lamprey are one of the oldest living groups of vertebrates from the
Agnatha assemblage that dates back to about 500 million years ago (Wang and Schaller
2015). Lamprey have persisted through four major extinction events and, as a living fossil,
provide valuable information about the evolution of vertebrates (Docker et al. 2015).

Pacific Lamprey are a key component of the ecology of western rivers in the U.S.
because they: make up a large portion of the biomass in streams therefore, making them
an important component in processing nutrients and nutrient cycling; contribute consid-
erable amounts of marine-derived nutrients in freshwater streams when they return from
the ocean; and act as a buffer to predation (in the freshwater and marine environment)
for many commercially valuable salmon species (Wang and Schaller 2015). Given Pacific
Lamprey’s persistence over time and vital role in the ecosystem, they have likely influ-
enced the evolution of many aquatic species across the Pacific Rim from Japan to Mexico.

Currently, populations have declined in abundance and are restricted in distribution
throughout Washington, Oregon, Idaho and California (Luzier et al. 2011; Goodman and
Reid 2012; Clemens et al. 2017). Threats to Pacific Lamprey occur in much of their range
and include restricted mainstem and tributary passage, reduced flows and dewatering of
streams, stream and floodplain degradation, degraded water quality and changing marine
and climate conditions (Luzier et al. 2011; Goodman and Reid 2012; Clemens et al. 2017).
In light of these threats, partners including Native American tribes and federal, state and
local agencies; developed the Pacific Lamprey Conservation Initiative (Initiative) to work
collaboratively to conserve and restore Pacific Lamprey by reducing threats and improving
their habitats (USFWS 2012; Wang and Schaller 2015).

The landscape level strategy of the Initiative is a three-part process which includes: an
Assessment and Template for Conservation Measures (Assessment), a Conservation
Agreement, and Regional Implementation Plans. The Assessment was completed in
October 2011 (Luzier et al. 2011) and December 2012 (Goodman and Reid 2012), and the
Conservation Agreement was signed by tribal, state and federal partners on 20 June 2012
(USFWS 2012). Through the Initiative, lamprey restoration efforts are coordinated with
large-scale restoration activities for salmonids listed under the U.S. Endangered Species
Act (ESA 1973). By evaluating the results of the risk assessments and the ongoing salmon
and lamprey conservation measures, restoration gaps were identified for lamprey (Luzier
et al. 2011; Goodman and Reid 2012; USFWS 2019). Restoration measures to fill these
gaps are prioritized and implemented through ongoing assessments in an adaptive man-
agement framework (Wang and Schaller 2015).

One of the key areas of uncertainty identified through the Initiative was the impact of
climate change on Pacific Lamprey and how these effects would influence the priorities
for restoration actions (Luzier et al. 2011; Goodman and Reid 2012). Therefore, a consist-
ent and thorough climate change vulnerability assessment is extremely important to
inform how to address key threats by prioritizing restoration actions for rivers of the
western U.S.

A pilot climate change vulnerability assessment to help illustrate the importance of
informing Pacific Lamprey restoration activities was conducted using the NatureServe
Climate Change Vulnerability Index (CCVI) (Schaller and Wang 2011; Young et al. 2011)
by applying the currently available downscaled environmental changes for air temperature
and moisture (Figure 1).
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We concluded from the pilot study results and expert opinion (Bruce Young,
NatureServe, personal communication) that incorporating specific hydrologic changes
would greatly improve the assessment of climate change impacts for Pacific Lamprey.
Therefore, we modified the CCVI to accommodate more specific information on changes
in stream conditions. This modified tool provided a scoring system for indexing Pacific
Lamprey vulnerability to the impacts of climate change and serves as a hybrid framework
using trend and trait-based information. This is a model construct that performed rela-
tively well in an evaluation of climate change vulnerability assessments (Wheatley et al.
2017). We applied this system to Pacific Lamprey with existing information provided by
the downscaled climate predictions (Coupled Model Intercomparison Project 5 [CMIP5]
2013). We evaluated how climate change predictions shifted specific environmental indi-
cators such as hydrologic timing and stream temperature. We then assessed how these
environmental changes effect the vulnerability of Pacific Lamprey.

Pacific Lamprey, an anadromous species, has multiple life stages in the freshwater and
marine environment. The life span of Pacific Lamprey ranges from about 4 to 13 years.
Pacific Lamprey spends the majority of their life cycle in freshwater (3–7 years as larvae
and 0–2 years as adult migrants) and up to 3.5 years in a marine parasitic stage (Beamish
1980; Clemens et al. 2017). Pacific Lamprey larvae undergo major physiological and mor-
phological changes during their metamorphosis into their parasitic stage and transition to
seawater. Peak outmigration of the metamorphosed juveniles or transformers occurs pri-
marily during winter and spring freshets but some outmigration also occurs throughout
the year (Goodman et al. 2015).

We use the life stage nomenclature of Clemens (2019) when characterizing the impacts
of environmental change on lamprey. Changes in the hydrologic regime, as measured by
the change in hydrograph timing, would affect larval, transformer, juvenile and adult life
stages of Pacific Lamprey.

Figure 1. Pacific Lamprey NatureServe Climate Change Vulnerability Index results for mid and end-century time peri-
ods using the CMIP3 downscaled moisture and air temperature from ensemble model under the A1b and A2 carbon
emission scenarios (Schaller and Wang 2011).
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Downstream movement in larval, transformer and juvenile Pacific Lamprey coincides
with increases in stream discharge (Beamish and Levings 1991; Dawson et al. 2015).
Earlier peak flows could prematurely move larval and transformer lamprey (prior to com-
pleting metamorphosis) to estuary and ocean environments. This could result in exposing
these life stages to saline conditions prior to making the physiological changes needed to
accommodate osmoregulatory function. Changes in outmigration timing in salmon and
steelhead populations cause smolt mortality as well as delayed mortality at subsequent life
stages (Budy et al. 2002; Scheuerell et al. 2009; Petrosky and Schaller 2010) and likely
extends to other anadromous species. Changes in hydrologic timing affect the upstream
migration and overwintering of the lamprey adult stage. In the Columbia River (at
Bonneville Dam) lamprey run timing shifted progressively earlier from 1939 to 2007,
coincident with decreasing Columbia River discharge and increasing water temperature;
migration timing was earliest in warm, low-discharge years and latest in cold, high-flow
years (Keefer et al. 2009).

Along with discharge, stream temperature is an important cue for initiation of down-
stream migration (Potter and Huggins 1973; Dawson et al. 2015). Increased water temper-
atures both in magnitude and timing affect multiple life stages of Pacific Lamprey. For
example, increased stream temperatures could increase respiration rates for adult lamprey
that are holding before spawning. These increased respiration rates come at an energetic
cost that could cause increases in pre-spawning mortality or could decrease egg produc-
tion and viability resulting in a reduction of reproductive rates for these populations
(Moser et al. 2015).

Water temperature is a critical cue in the metamorphosis of lampreys transforming
from the larval to the juvenile stage. Temperature influences the onset of metamorphosis,
the rate of development during metamorphosis and the incidence of metamorphosis
within a population (Dawson et al. 2015). Metamorphosing sea lamprey exposed to a
large change in temperature (from 8 to 21 �C) were smaller than metamorphosing lam-
prey exposed to a smaller change in temperature (from 8 to 13 �C) possibly because of
the energetic cost to maintaining body size in warmer temperatures (Holmes and Lin
1994; Holmes and Youson 1997; Dawson et al. 2015). In a study by Holmes and Youson
(1998), the optimal temperature for metamorphosis was 21 �C when comparing to 9, 13,
17, 21 and 25 �C (Dawson et al. 2015). The incidence of metamorphosis is expected to
decrease when the temperature is higher than 21 �C (Holmes and Youson 1998).
Additionally, long-term studies show that low temperatures in the winter are necessary to
ensure that physiological conditioning (increase in lipid concentration) occurs (Lowe
et al. 1973; O’Boyle and Beamish 1977; Dawson et al. 2015) prior to rising temperatures
in the spring and onset of metamorphosis. Studies on the effect of water temperature on
rearing larval lamprey estimate the ultimate upper incipient lethal temperature to be
27.7–28.5 �C (Uh and Whitesel 2016). In a study by Meeuwig et al. (2005), survival of
embryonic and newly hatched Pacific Lamprey pro-larvae was highest at 18 �C when com-
pared to 10, 14 and 22 �C while survival at 22 �C was significantly lower than at the other
temperatures. In summary, Clemens et al. (2017) identified temperatures of 20 �C or
higher as being consistent with stress, tissue damage, and potential mortality for lamprey.
In addition, changes to stream temperature regimes can obstruct with and create mis-
matches in the timing of the key seasonal activities of migration, spawning and embryonic
development for Pacific Lamprey (Maitland et al. 2015; Clemens et al. 2017).

We evaluated the climate change vulnerability risk for Pacific Lamprey in 15 rivers of
the west coast of the U.S. (Figure 2). These river basins ranged from Northern California
to the Canadian border.
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We evaluated this risk under two different greenhouse gas emission scenarios (which
include greenhouse gas emission, carbon concentration and land use trajectories; van
Vuuren et al. 2011) and for two time periods (mid-century 2040–2069 and end-century
2070–2099). We compared and contrasted climate change vulnerability risk for Pacific
Lamprey across the 15 river basins to see if there were any geographic patterns in vulner-
ability and to inform restoration actions and monitoring and evaluation needs. We also
evaluated whether climate change would have a greater impact on Pacific Lamprey vulner-
ability in highly altered rivers.

Figure 2. The 15 river basins and larger geographic groupings used for the Pacific Lamprey vulnerability assessment.
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Methods

The NatureServe CCVI calculator is a tool that provides a categorical scoring system for
indexing species vulnerability to the impacts of climate change. The general description of
the CCVI approach for Pacific Lamprey was taken from NatureServe Guidelines (Young
et al. 2011). The CCVI calculator divides the CCVI into two components: the exposure to
climate change across the range of the species within the assessment area and the sensitiv-
ity of the species to climate change (Young et al. 2011). The index represents the conse-
quences of species vulnerability (species sensitivity) to changing global patterns in
precipitation and temperature. None of the sensitivity factors will influence the index
score if the climate in an assessment area remains relatively stable, resulting in the species
likely scoring at the less vulnerable end of the range. Conversely, a large change in tem-
perature or precipitation will amplify the effect of any related sensitivity and will influence
the index to score at the high end of vulnerability (Young et al. 2011).

Direct exposure is the magnitude or predicted temperature and moisture change (pre-
cipitation and the influence on stream flow) across the range of species within the assess-
ment area (Young et al. 2011). The direct exposure is predicted by 10 General Circulation
Models (GCM); under two future greenhouse gas emission scenarios (Representative
Concentration Pathway (RCP) 4.5 optimistic and RCP 8.5 pessimistic).

As described in Young et al. (2011), sensitivities are composed of two categories: indir-
ect exposure and species sensitivity. Indirect exposure characterizes the impact of sea level

Figure 3. Relation between exposure to local climate change and sensitivity factors (modified from Young et al. 2011,
Figure 1).
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rise, natural and anthropogenic barriers and land use changes from human response to
climate change on the species of interest. Species sensitivities characterize how the biology
and ecological preferences of a species influences how vulnerable a species is to environ-
mental shifts from climate change projections. Following the approach of Luzier et al.
(2011), we applied the assessment at the hydrologic unit code [HUC] 4 (Seaber et al.
1987)); because it provided the highest degree of specificity for demographics and threats,
assessing vulnerability patterns, and to identify any relative strongholds or weak areas for
Pacific Lamprey conservation . We calculated the CCVI for two time periods; mid-century
(2040–2069) and end-century (2070–2099).

The NatureServe calculator integrates direct exposure and species sensitivities to gener-
ate a CCVI (Figure 3). The calculator combines information on exposure and sensitivity
to produce a numerical sum. The sum or score is converted into a categorical index by
comparing it to threshold values. The six possible indices are Extremely Vulnerable (EV;
score >10), Highly Vulnerable (HV; score <10 and �7), Moderately Vulnerable (MV;
score <7 and �4), Presumed Stable (PS; score <4 and �0), Increase Likely (IL; score <0)
and Insufficient Evidence (IE). Therefore, the CCVI outcomes can range from increasing
lamprey vulnerability (extremely vulnerable) to decreasing lamprey vulnerability (increase
likely) to climate change.

Modification of CCVI technique to accommodate Pacific Lamprey

We made the following modifications to estimate vulnerability indices for lamprey:

1. For direct exposure inputs, we incorporated the most current downscaled air tem-
perature data (CMIP5 2013) converted to stream temperature, and runoff and base-
flow data routed via a stream network to produce estimates of average daily flow to
calculate hydrologic timing (see details below in hydrologic timing section) (Taylor
et al. 2012). In order to incorporate the stream temperature exposure input distribu-
tions into Section A of the NatureServe calculator, we conducted a sensitivity analysis
on the method for creating distributions from downscaled temperature results and
how this would affect the CCVI. Specifically, we analyzed how selection of the value
for the most vulnerable end of the bin of exposure distribution affects the exposure
score (using 0.7 or 0.8 as the upper end value) and how the starting point of the dis-
tribution (90th vs. 95th percentile of historical August mean stream temperature for
the insignificant/low bin), also impacted the exposure score. We used August mean
temperature because it typically represents the warmest period of the year (climate
change scenario forecasts also exhibited the largest change from historical tempera-
tures in August) and the time frame that would pose the most challenges to meta-
bolic rates of larval, transforming and adult life stages. August temperatures were
used in studies assessing the impacts of climate change on other aquatic species in
rivers of the Pacific Northwest (Isaak et al. 2012, 2018).

2. In the sensitivity section, we did not apply sensitivity factors that were not applicable
to lamprey (dependence on ice, ice-edge, or snow cover habitats; restriction to
uncommon geological features; pollinator versatility [plants only]; and dependence on
other species for propagule dispersal) and added historical thermal and hydrologic
timing niches to the list of sensitivity factors. These sensitivity factors were applied to
assess lamprey: dispersal and movements; thermal niche; hydrologic niche; depend-
ence on specific disturbance regimes; dependence on other species to generate habitat;
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dietary versatility; host parasite relationship that forms part of an interspecific inter-
action; and measured genetic variation.

3. Pacific Lamprey climate change vulnerability risk was assessed for 15 HUC 4 basins
across much of the species range in the coterminous U.S. (Table 1). We selected these
basins across the distribution of Pacific Lamprey in the U.S. to represent the eco-
logical and environmental conditions experienced by lamprey. The 15 basins selected
each had specific downscaled climate predictions to capture variation in exposure
experienced by lamprey. In addition, we grouped the basins into Larger Geographic
Groupings (LGG) to capture similar ecological and environmental conditions as com-
pared to the full range of basins (Table 1). These geographic groupings helped to
facilitate analysis of Pacific Lamprey climate change vulnerability.

4. We modified the CCVI model to run multiple basins and climate scenarios at once.

Table 1. Summary of CCVI risk scores by GCM in both RCP 4.5 and 8.5 greenhouse gas emission scenarios for mid
and end-century time periods.

CSIRO-Mk3-6-0 4.5 mid 4.5 end 8.5 mid 8.5 end NORESM1-M 4.5 mid 4.5 end 8.5 mid 8.5 end

Umpqua 11.02 12.17 12.17 13.66 Umpqua 8.00 12.17 10.64 13.66
Chehalis 4.84 5.50 4.84 6.00 Chehalis 4.16 5.34 4.84 6.00
Necanicum 5.42 5.01 5.01 5.75 Necanicum 3.50 5.01 5.01 5.75
Klickitat 2.66 2.66 3.34 3.34 Klickitat 2.66 2.66 2.66 3.34
Umatilla 5.99 5.99 5.99 5.99 Umatilla 4.33 4.67 5.00 5.00
Yakima 10.85 9.66 10.85 10.85 Yakima 7.98 10.02 8.83 10.85
Methow 7.66 7.66 7.16 8.85 Methow 6.65 7.16 7.16 8.85
Asotin 7.33 7.33 7.33 7.99 Asotin 5.66 6.65 7.33 7.99
Selway 7.32 7.32 7.32 8.68 Selway 6.99 7.32 7.32 8.68
MF Salmon 9.00 9.00 11.01 11.01 MF Salmon 7.98 9.00 9.00 11.01
Sandy 4.66 4.66 4.66 5.34 Sandy 3.33 4.33 3.67 4.66
Tualatin 3.67 4.66 4.66 4.66 Tualatin 3.33 3.67 3.67 4.00
Skagit 8.26 8.26 8.26 8.26 Skagit 6.75 8.26 7.49 8.26
Smith 4.34 4.26 4.26 5.17 Smith 3.33 4.34 4.26 5.17
SF Eel 6.01 6.01 6.01 7.25 SF Eel 4.66 5.93 6.01 7.25
Min 2.66 2.66 3.34 3.34 Min 2.66 2.66 2.66 3.34

Max 11.02 12.17 12.17 13.66 Max 8.00 12.17 10.64 13.66
Average 6.60 6.68 6.86 7.52 Average 5.29 6.43 6.19 7.36
Standard Dev. 2.48 2.45 2.69 2.78 Standard Dev. 1.95 2.60 2.29 2.93

bcc-csm 1-1-m 4.5 mid 4.5 end 8.5 mid 8.5 end

Umpqua 9.49 12.17 11.02 12.17
Chehalis 4.16 5.34 4.84 6.00
Necanicum 4.66 5.42 5.42 6.16
Klickitat 2.66 3.34 2.66 3.34
Umatilla 4.99 4.99 4.33 5.99
Yakima 8.35 9.17 9.17 10.85
Methow 6.16 7.84 7.84 8.85
Asotin 5.99 6.65 5.66 7.99
Selway 6.65 8.01 8.35 8.68
MF Salmon 7.98 9.00 9.00 9.00
Sandy 3.99 3.99 4.33 4.66
Tualatin 3.33 3.99 3.67 4.00
Skagit 7.52 7.52 7.52 8.26
Smith 3.41 4.26 4.26 4.26
SF Eel 3.50 6.01 6.01 6.01
Min 2.66 3.34 2.66 3.34

Max 9.49 12.17 11.02 12.17
Average 5.52 6.51 6.27 7.08
Standard Dev. 2.11 2.44 2.41 2.58
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Direct exposure

The Intergovernmental Panel on Climate Change (IPCC) gathers and reviews global cli-
mate models (GCMs). The ensemble of the GCMs is called the Coupled Model
Intercomparison Project (CMIP). The CMIP3 model ensemble was released in 2010
(Meehl et al. 2007). The CMIP5 model ensemble was released in 2013 (Taylor et al.
2012). Differences in global temperature projections are largely attributable to a change in
greenhouse gas emission scenarios. In a previous pilot study, CMIP3 was employed
(Schaller and Wang 2011). We used CMIP5 outputs to develop the downscaled stream
temperature and hydrologic data for exposure inputs in this study.

GCMs project large-scale climate patterns (including precipitation, evaporation and
temperature) for the earth under two different carbon emission scenarios (RCP 4.5 and
RCP 8.5). The RCP 4.5 is a stabilization scenario in which total radiative forcing is sta-
bilized shortly after 2100, without overshooting the long-run radiative forcing target
level (Smith and Wigley 2006; Clarke et al. 2007; Wise et al. 2009; van Vuuren et al.
2011). The RCP 8.5 scenario is characterized by increasing greenhouse gas emissions
over time, representative of scenarios in the literature that lead to high greenhouse gas
concentration levels (Riahi et al. 2007; van Vuuren et al. 2011). The GCM model out-
puts are downscaled for hydrology and temperature for the CMIP5 multi-model dataset
(CMIP5 2013). We were able to acquire downscaled hydrology and temperature data
from 10 GCMs used in the CMIP5 ensemble. We used three of the model outputs
(NorESM1-M, bcc-csm1-1-m and CSIRO-Mk3-6-0) to bound the potential future hydro-
logic and stream temperature conditions. The NorESM1-M GCM is the Norwegian
Earth System model used for predicting climate under varying carbon emission scen-
arios (Bentsen et al. 2013). The bcc-csm1-1-m is a short-term climate prediction model
system under varying carbon emission scenarios (Ding et al. 2000; CSMD 2005). The
CSIRO-Mk3-6-0 climate system model is used for predicting climate under varying car-
bon emission scenarios (Gordon et al. 2002). We selected these three models out of the
10 possible GCMs in CMIP5 to represent the median (bcc-csm1-1-m), optimistic condi-
tions (NorESM1-M) and pessimistic (CSIRO-Mk3-6-0) hydrologic conditions for future
projections.

Hydrologic timing
The vulnerability assessment for Pacific Lamprey requires estimates of daily historical and
future flows. The CMIP5 downscaled runoff and baseflow data were routed via a stream
network to produce estimates of average daily flow for each of the selected HUC 4 basins
across the region (Table 1). This stream flow routing was produced by the Climate
Impacts Group for the 15 basins using the Variable Infiltration Capacity (VIC) model
(Climate Impacts Group 2015). Inputs were from three CMIP5 GCM projections (defined
above) spanning the historical period 1951–2006, mid-century (2040–2069) and end-
century (2070–2099) for both a low and high greenhouse gas emission scenario (RCPs 4.5
and 8.5, respectively).

In order to develop direct exposure for hydrologic timing, we compared future to his-
torical distributions of hydrologic mean dates. The timing of migration of anadromous
fish species, such as Pacific salmon (Oncorhynchus spp.), Atlantic salmon (Salmo salar),
American shad (Alosa sapidissima) and alewives (Alosa pseudoharengus), at specific loca-
tions during the life cycle have been observed to vary with water temperature and river
flow (Mundy and Evenson 2011). Changes in hydrologic timing affect the upstream
migration and overwintering of the adult stage and earlier peak flows could prematurely
move larval and transformer lamprey (prior to completing metamorphosis) to estuary and
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ocean environments (see introduction above). In order to capture how the hydrograph
varies (including the effect of peak flows) within a basin, we used hydrologic mean date
to consistently represent these changes that could impact a number of lamprey life stages
(described above) across all of the 15 HUCs. Because of large variation in stream volume
among the 15 HUCs, many other hydrologic indicators could not be standardized to
evaluate the impacts to lamprey populations. The hydrologic mean date, for each year,
represents the date when 50% of the volume of the river for the water year passes a
downstream location in each of the 15 basins we evaluated. The yearly hydrologic mean
date is calculated in the following steps: (1) for each day of the water year, calculate the
daily proportion of discharge by dividing the daily discharge by the total discharge for the
water year; (2) multiply the proportion by the Julian date for each day of the water year;
and (3) calculate the mean date by summing all daily results in step 2 (daily prop.�Julian
date) over the water year.

To accomplish this for the three selected GCMs and for both RCP 4.5 and RCP 8.5 cli-
mate change scenarios, we conducted the following steps:

1. Calculated hydrologic mean dates for each year in the historical period 1951–2006.
2. Calculated historical grand mean of the annual hydrologic mean dates from 1951

to 2006.
3. Calculated how many days the yearly hydrologic mean date (for years 1951–2006)

deviates from the historical grand mean. This is termed the days of deviation. The
days of deviation each year for 1951–2006, constitutes the historical distribution for
days of deviation.

4. Created bins, using the historical days of deviation, to bound what lamprey have his-
torically experienced in each of the 15 basins.
a. Bin 1 – Low/Insignificant – Days of deviation from grand mean within or equal

to two standard deviations from historical distribution of deviation days
(1951–2006) for each basin.

5. Bin 2 – Medium Low – Days of deviation from grand mean (by HUC) outside of
two standard deviations from historical distribution of deviation days (1951–2006) or
equal to the 5th or 95th percentile for the HUC.

6. Bin 3 – Medium High – Days of deviation from grand mean (by HUC) outside of
the 5th or 95th percentile for historical distribution of deviation days (1951–2006) or
equal to 5th or 95th percentile in the LGG.

7. Bin 4 – High – Days of deviation from grand mean (by HUC) outside of the 5th and
95th percentile for historical distribution of deviation days (1951–2006) in the LGG
or equal to the 5th and 95th percentile in the U.S. geographic range of lam-
prey (range).

8. Bin 5 – Very High – Days of deviation from grand mean (by HUC) outside 5th and
95th percentile for historical distribution of deviation days (1951–2006) over
the range.

From the downscaled GCM average daily flow, we calculated the projected future hydro-
logic mean date for each year of the mid-century 2040–2069 and end-century
2070–2099. Next, we calculated how many days the yearly hydrologic mean date (for
years 2040–2099) deviates from the historical grand mean. This is termed the days of
deviation. The days of deviation for each year 2040–2069 constitutes the mid-century
future projected distribution for days of deviation. The days of deviation for each year
2070–2099 constitute the end-century future projected distribution for days of deviation.
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The future projected distribution was constructed by placing annual days of deviation (for
mid-century and end-century) into the historical bins developed in Step 4 above. These
distributions are used as the exposure inputs into the NatureServe CCVI model.

Stream temperature
The vulnerability assessment for Pacific Lamprey requires estimates of daily historical and
future August stream temperatures. For this direct exposure, we focused on August
stream temperatures because they historically represent the warmest monthly tempera-
tures recorded annually for the 15 basins we assessed.

We calculated August mean air temperatures from downscaled daily August air tem-
peratures derived from CMIP5 GCM projections (defined above) for each of the selected
basins across the region (Figure 2). These mean temperatures are from the mouth of each
basin. Using CMIP3 downscaled air temperature, the NorWeST group developed a stream
temperature data base and models for characterizing changes from historical conditions
to those for projected climate scenarios. The NorWeST group provided parameters to
convert the change in air temperatures to stream temperatures (https://www.fs.fed.us/rm/
boise/AWAE/projects/NorWeST.html). They accomplished this by building a temperature
model that is fit to all the stream data within each domain (approximating an LGG) to
produce an air temperature conversion parameter that represents historical climate runs
(Hostetler et al. 2011). Figure 4 provides the conversion parameters from air to stream
temperature (Dan Isaak, NorWest group, personal communication). Using these parame-
ters (for the appropriate basins), we converted (multiply air temperature by conversion
parameter) the August mean air temperatures to August mean stream temperatures for
the 15 basins using outputs from the three CMIP5 GCM projections (defined above)
spanning the historical period 1951–2006, mid-century (2040–2069) and end-century
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Figure 4. The air/stream temperature relations to convert CMIP5 air temperature to stream temperature for Climate
Change Vulnerability Index estimates (D. Isaak NorWeST 2015).
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(2070–2099) for both a low and high greenhouse gas scenario (RCPs 4.5 and 8.5,
respectively).

In order to develop direct exposure for stream temperatures, we needed to compare
future to historical distribution of August mean stream temperature. To accomplish this
for the three selected GCMs and for both RCP 4.5 and RCP 8.5 scenarios, we conducted
the following steps:

1. Calculated August mean stream temperature for each year of the projected historical
dataset (1951–2006).

2. Calculated historical grand mean for August stream temperature from the annual
August mean temperatures from 1951 to 2006.

3. Calculated how many degrees the August mean each year (1951–2006) deviates from
historical grand mean. This is termed the degrees of deviation. The degrees of devi-
ation calculated for August in the years 1951–2006, constitutes the historical distribu-
tion for the degrees of deviation.

4. In order to inform the criteria for constructing the bins to develop historical and
future distributions for temperature exposure inputs we ran a sensitivity analysis. We
ran the simulations for bcc-csm 1-1-m evaluating the effect of the criteria for the
upper end of temperature exposure score (0.7 and 0.8 values) to the CCVI. And the
starting point for the bins, 90th percentile versus 95th percentile. We ran simulations
to evaluate these sensitivities for RCP 4.5 and 8.5 mid-century and end-century. For

Table 2. Summary of CCVI risk categories by GCM in both RCP 4.5 and 8.5 greenhouse gas emission scenarios for
mid and end-century time periods.

CSIRO-Mk3-6-0 4.5 mid 4.5 end 8.5 mid 8.5 end NORESM1-M 4.5 mid 4.5 end 8.5 mid 8.5 end

Umpqua EV EV EV EV Umpqua HV EV EV EV
Chehalis MV MV MV MV Chehalis MV MV MV MV
Necanicum MV MV MV MV Necanicum PS MV MV MV
Klickitat PS PS PS PS Klickitat PS PS PS PS
Umatilla MV MV MV MV Umatilla MV MV MV MV
Yakima EV HV EV EV Yakima HV EV HV EV
Methow HV HV HV HV Methow MV HV HV HV
Asotin HV HV HV HV Asotin MV MV HV HV
Selway HV HV HV HV Selway MV HV HV HV
MF Salmon HV HV EV EV MF Salmon HV HV HV EV
Sandy MV MV MV MV Sandy PS MV PS MV
Tualatin PS MV MV MV Tualatin PS PS PS PS
Skagit HV HV HV HV Skagit MV HV HV HV
Smith MV MV MV MV Smith PS MV MV MV
SF Eel MV MV MV HV SF Eel MV MV MV HV

bcc-csm 1-1-m 4.5 mid 4.5 end 8.5 mid 8.5 end

Umpqua HV EV EV EV
Chehalis MV MV MV MV
Necanicum MV MV MV MV
Klickitat PS PS PS PS
Umatilla MV MV MV MV
Yakima HV HV HV EV Most Vulnerable
Methow MV HV HV HV Most stable
Asotin MV MV MV HV
Selway MV HV HV HV
MF Salmon HV HV HV HV
Sandy PS PS MV MV
Tualatin PS PS PS PS
Skagit HV HV HV HV
Smith PS MV MV MV
SF Eel PS MV MV MV
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all combinations the majority of the 15 populations have no or small difference
between 0.7 and 0.8 and 90th percentile to 95th percentile (Table 2). So we used 95th
percentile and 0.7 for the resulting CCVI scores. Given the results of the sensitivity
analyses, we ran all the remaining simulations at the temperature exposure score of
0.7 and at the 95th percentile of historical temperature.

5. Created bins, using the historical distribution for degrees of deviation, to bound what
lamprey have experienced in the 15 basins (HUCs):
a. Bin 1 – Low/Insignificant – Degrees of deviation from grand mean (by HUC) is

inside or equal to the HUC’s 95th percentile of the historical distribution of
degrees of deviation (1951–2006).

6. Bin 2 - Medium Low – Degrees of deviation from grand mean is greater than the
HUC’s 95th percentile or less than or equal to the HUC’s 99th percentile of the his-
torical distribution of degrees of deviation (1951–2006).

7. Bin 3 – Medium High – Degrees of deviation from grand mean is greater than the
HUC’s 99th percentile or less than or equal to the highest 99th percentile (for a
HUC) in the LGG of the historical distribution of degrees of deviation (1951–2006).

8. Bin 4 – High – Degrees of deviation from grand mean is greater than the LGG’s 99th
percentile or less than or equal to the highest 99th percentile (for a HUC) in the
range of the historical distribution of degrees of deviation (1951–2006).

9. Bin 5 – Very High – Degrees of deviation from grand mean is greater than the high-
est 99th percentile (for a HUC) in the range of the historical distribution of degrees
of deviation (1951–2006).

� From the three GCMs downscaled temperature datasets (air temperature converted to
stream temperature), we calculated projected future August mean stream temperature
for each year of the mid-century 2040–2069 and end-century 2070–2099. Next, we cal-
culated how many degrees the yearly August mean (for years 2040–2099) deviates
from the historical grand mean. This is termed the degrees of deviation. The yearly
degrees of deviation for 2040–2069 constitute the mid-century future projected distri-
bution. The yearly degrees of deviation for 2070–2099 constitute the end-century
future projected distribution.

� The future projected distribution was constructed by placing annual degrees of devi-
ation (for mid-century and end-century) into the historical bins developed in Step 4
above. These distributions are used as the exposure inputs into Section A of calculator
tab in the NatureServe CCVI model.

Sensitivities

Sensitivities are composed of two categories; indirect exposure and species sensitivity
(Figure 3). Indirect exposure characterizes the impact of sea level rise, natural and
anthropogenic barriers, and land use changes from human response to climate change on
the species of interest (Young et al. 2011). Species sensitivities characterize how biology
and ecological preferences of Pacific Lamprey could influence how vulnerable a species is
to environmental shifts from climate change. Historical thermal and historical hydro-
logical niche sensitivity factors are directly influenced by downscaled temperature and
hydrologic timing model projections to characterize species vulnerability.

To define the sensitivity of Pacific Lamprey we used research, monitoring and evalu-
ation data from Luzier et al. (2009, 2011). The 2009 publication describes regional differ-
ences in Pacific Lamprey biology, population structure, habitat preferences and threats.
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Luzier et al. (2011) outline the population demographics, threats and overall risk for
Pacific Lamprey throughout the U.S. range. In addition to these documents, we used pro-
fessional judgment from lamprey experts on the Lamprey Technical Workgroup and the
Initiative Conservation Team. We used this information to inform the answers to ques-
tions for section B (indirect exposure) and section C (sensitivities) that are inputs to the
NatureServe CCVI. These inputs are placed into categories: greatly increase vulnerability,
increase vulnerability, somewhat increase vulnerability, neutral, somewhat decrease vul-
nerability and decrease vulnerability.

Indirect exposure
Exposure to sea level rise – For each basin we chose the level of vulnerability from
Greatly Increase to Somewhat Decrease based on percentage of range subject to sea level
rise (see Section B1 for bin definition; Young et al. 2011, p. 16)

Distribution relative to natural barriers – For each basin we chose the level of vulnerability
from Greatly Increase to Neutral based on the status of natural barriers and lamprey’s ability
to shift for climate change (see Section B2 for bin definition; Young et al. 2011, p. 18–19).

Distribution relative to anthropogenic barriers – For each basin we chose the level of
vulnerability from Greatly Increase to Neutral based on the status of anthropogenic bar-
riers and lamprey’s ability to shift for climate change (see Section B2 for bin definition;
Young et al. 2011, p. 18–19).

Predicted impact of land use changes from human response to climate change – For
each basin we chose the level of vulnerability from Increase to Decrease based on the nat-
ural history requirements of lamprey and compatibility with mitigation (see Section B3
for bin definition; Young et al. 2011, p. 20–21).

Species sensitivity
Dispersal and movements – For each basin we chose level of vulnerability from Greatly
Increase to Somewhat Decrease based on ability of lamprey to disperse and move (see
Section C1 for bin definition; Young et al. 2011, p. 22–24)

Historical Thermal Niche – Historical thermal niche measures large-scale temperature
variation that a species has experienced in recent historical times (Young et al. 2011). We
scored this sensitivity (Figure 3 – Temperature Regime) using the following steps:

1. Used converted August air temperature to stream temperatures for years
1951–2006 (historical).

2. Calculated the difference between historical August 95th percentile stream tempera-
ture and August 5th percentile stream temperature.

3. Created equal bins using August stream temperature 20th percentile and August max-
imum stream temperature to bound what lamprey have experienced in the 15 basins.
a. Greatly Increase: <1.17� of temperature variation

4. Increase: equal to 1.17 or less than or equal to 1.50
5. Somewhat Increase: equal to 1.51 or less than or equal to 1.83
6. Neutral: equal to 1.84 or less than or equal to 2.15
7. Somewhat Decrease: >2.15

� For each basin, the level of vulnerability was determined based on how much tempera-
ture variation lamprey have experienced historically (1951–2006) (see Section C2ai for
bin definition; Young et al. 2011, p. 24–25).
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Physiological Thermal Niche – For each basin we chose level of vulnerability from
Greatly Increase to Somewhat Decrease based percentage of occurrences or range restricted
to cold environments (see Section C2aii for bin definition; Young et al. 2011, p. 25)

Historical Hydrologic Niche – Historical hydrological niche measures large-scale
hydrologic timing variation that a species has experienced in recent historical times. We
modified this sensitivity (Figure 3 – Hydrologic Regime) from precipitation (described in
Young et al. 2011) to hydrologic timing to accommodate more specificity of impacts to
aquatic species. We scored this sensitivity using the following steps.

1. Calculated the standard deviation for days of deviation from mean Julian date for the
historical period 1951–2006. We calculated two sets of bins to incorporate uncertainty
concerning the historical hydrologic niche scores.

2. Create bins using both 5th and 95th percentile
a. Greatly Increase: <5.25 days of deviation from mean

3. Increase: equal to 5.25 or less than or equal to 16
4. Somewhat Increase: equal to 16.1 or less than or equal to 26
5. Neutral: equal to 26.1 or less than or equal to 35.84
6. Somewhat Decrease: >35.85

� Create bins using both 1st and 99th percentile
a. Greatly Increase: <5.09 days of deviation from mean

� Increase: equal to 5.09 or less than or equal to 17.49
� Somewhat Increase: equal to 17.5 or less than or equal to 29.9
� Neutral: equal to 29.91 or less than or equal to 42.29
� Somewhat Decrease: >42.29
� For each basin two levels of vulnerability were used (one score for each set of bins)

based on how much variation in hydrologic timing lamprey have experienced historic-
ally (1951–2006) (see Section C2bi for bin definition pg 26; Young et al. 2011).

Physiological Hydrologic Niche – For each basin we chose level of vulnerability from
Greatly Increase to Somewhat Decrease based percentage of occurrences or range depend-
ent on specific hydrologic timing regime (see Section C2bii for bin definition; Young
et al. 2011, p. 27–28).

Dependence on specific disturbance regime likely to be impacted by climate change –
For each basin we chose level of vulnerability from Increase to Decrease based on level of
response by lamprey to disturbance regime and climate change interaction (see Section
C2c for bin definition; Young et al. 2011, p. 28–29).

Dependence on other species to generate habitat – For each basin we chose level of vulnerabil-
ity from Greatly Increase to Neutral based on lamprey’s dependence on another species or mul-
tiple species to generate habitat (see Section C4a for bin definition; Young et al. 2011, p. 31–32).

Dietary versatility – For each basin we chose level of vulnerability from Increase to
Somewhat Decrease based on lamprey’s dietary versatility (see Section C4b for bin defin-
ition; Young et al. 2011, p. 32).

Forms part of another interspecific interaction – For each basin we chose level of vul-
nerability from Increase to Neutral based on how lamprey need to be involved in inter-
specific relationships (see Section C4e for bin definition; Young et al. 2011, p. 33).

Measured genetic variation – For each basin we chose level of vulnerability from
Increase to Somewhat Decrease based on level of genetic variation in lamprey compared
to other aquatic species (see Section C5a for bin definition; Young et al. 2011, p. 33).
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Simulations

Once we parameterized the NatureServe calculator based on the description of steps above
for direct exposure and sensitivities (indirect exposure and species), we ran simulations to
capture a range of future conditions. Each simulation provides an estimate of CCVI,
which captures future conditions based on the GCM and RCP scenario used to develop
the exposure inputs to the NatureServe calculator. These simulations estimate CCVIs for
each of the 15 basins (that span the selected geographic range for Pacific Lamprey in the
U.S.) and for two time periods. These simulations, over the range of future conditions
and geographic range, were performed to represent uncertainty in biology, ecology, and
environmental conditions for Pacific Lamprey. The following are the steps we
implemented:

For calculating CCVIs, we limited our simulations to three GCMs representing median,
optimistic, and pessimistic projected downscaled exposure (see description above). The
simulation results are contrasted across GCMs to capture model uncertainty.

The GCMs project climate patterns under two different greenhouse emission scenarios;
both a low and high greenhouse gas scenario (RCPs 4.5 and 8.5, respectively; van Vuuren
et al., 2011). We calculated CCVIs for each of the 15 HUCs at both the mid-Century
(2040–2069) and end-century (2070–2099) time frame, using the GCM inputs described
above for RCP 4.5 and 8.5. These results are presented by GCM to capture the uncer-
tainty in projected greenhouse gas emission scenarios.

Results

Results by GCM

CSIRO-Mk3-6-0
For RCP 4.5 mid-century, the CCVI scores averaged 6.60 (MV). The most vulnerable basin
was the Umpqua (EV; 11.02) and the least vulnerable was the Klickitat (PS; 2.66). For end-
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century the CCVI scores averaged 6.68 (MV). The Umpqua was the most vulnerable (EV;
12.17) and the least vulnerable was the Klickitat (PS; 2.66) (Tables 1 and 2; Figure 5).

For RCP 8.5 mid-century, the CCVI scores averaged 6.86 (MV). The most vulnerable
was the Umpqua (EV; 12.17) and the least vulnerable was the Klickitat (PS; 3.34). For the
end-century the CCVI scores averaged 7.52 (HV). The most vulnerable was the Umpqua
(EV; 13.66) and the least vulnerable was the Klickitat (PS; 3.34) (Tables 1 and 2; Figure 5).
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Figure 6. Pacific Lamprey Climate Change Vulnerability Index simulations using downscaled bcc-csm1-1-m
model exposure.
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Figure 7. Pacific Lamprey Climate Change Vulnerability Index simulations using downscaled NORESM1-M
model exposure.
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The results for all three GCMs (CSIRO-Mk3-6-0, bcc-csm 1-1-m and NORESM1-M) for
RCP 4.5 and 8.5 and at mid and end of century consistently demonstrated that the most
vulnerable basin was the Umpqua and the least vulnerable was the Klickitat (Tables 1 and
2; Figures 6–8).

The CCVI scores for CSIRO-Mk3-6-0 increase on average from mid-century to end-
century for both emission scenarios. The three exceptions are for the Necanicum, Yakima,
and Smith HUCs, however, two of these are so minor they did not yield a change in the
vulnerability index (Tables 1 and 2). The one exception was the Yakima, which was
downgraded one category from EV to HV under the 4.5 RCP emission scenario.

The CCVI scores for the CSIRO-Mk3-6-0 also increased on average from RCP 4.5 to
8.5 for both time periods. The two exceptions occur under the RCP 4.5 scenario are for
the Necanicum, and Smith HUCs, however, these exceptions are so minor they did not
yield a change in the vulnerability index (Tables 1 and 2). The variation in CCVI scores
among HUCs increases from mid-century to end of century, and also increases from RCP
4.5 to 8.5 emission scenarios.

bcc-csm 1-1-m
For RCP 4.5 mid-century, the CCVI scores averaged 5.52 (MV). For end-century the
CCVI scores averaged 6.51 (MV) (Table 1).

For RCP 8.5 mid-century, the CCVI scores averaged 6.27 (MV). For end-century the
CCVI scores averaged 7.08 (HV) (Table 1).

The CCVI score results for the two time periods for bcc-csm 1-1-m on average
increase from mid-century to end-century for both emission scenarios. When we eval-
uated the results by emission scenario, CCVI scores for bcc-csm 1-1-m increased on aver-
age from RCP 4.5 to 8.5 for both mid-century and end-century simulations. The two
exceptions are the Umatilla and Asotin HUCs, however, these are so minor they did not
yield a change in the vulnerability index (Tables 1 and 2). The variation in CCVI scores
among HUCs increases from mid-century to end of century, and also increases from RCP
4.5 to 8.5 emission scenarios.
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Figure 8. Pacific Lamprey Climate Change Vulnerability Index simulations. Comparison for three Global Climate
Models for mid-century and Representative Concentration Pathway 4.5.
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NORESM1-M
For RCP 4.5 mid-century, the CCVI scores averaged 5.29 (MV). For end-century, the
CCVI scores averaged 6.43 (MV) (Table 1).

For RCP 8.5 mid-century, the CCVI scores averaged 6.19 (MV). For end-century, the
CCVI scores averaged 7.36 (HV) (Table 1).

The CCVI scores for NORESM1-M increase on average from mid-century to end-cen-
tury for both emission scenarios. When we evaluated the results by emission scenario, the
CCVI scores for NORESM1-M increased on average from RCP 4.5 to 8.5 for both mid-
century and end-century simulations. The variation in CCVI scores among HUCs
increases from mid-century to end of century, and also increases from RCP 4.5 to 8.5
emission scenarios.

Results across GCMs

Overall, the three GCMs represented the median hydrologic conditions (bcc-csm1-1-m),
optimistic conditions (NorESM1-M) and pessimistic conditions (CSIRO-Mk3-6-0). The
results were consistent for RCP 4.5 mid-century and end-century and RCP 8.5 mid-cen-
tury. However, for RCP 8.5 end of century, bcc-csm1-1-m the CCVI scores where slightly
more optimistic than NorESM1-M. The CCVI results calculated from the selected models
for the most part adhere to pessimistic and optimistic hydrologic designations (similar to
temperature designations). We believe these three models provide reasonable contrast to
bound projected future exposure conditions for anadromous lamprey and salmonids.

For RCP 4.5 mid-century, the CCVI scores averaged 5.29 (MV) for NorESM1-M; 5.52
(MV) for bcc-csm 1-1-m and 6.60(MV)(for CSIRO-Mk3-6-0 Tables 1 and 2; Figure 8).
For RCP 4.5 end-century, the CCVI scores averaged 6.43 (MV) for NorESM1-M; 6.51
(MV) for bcc-csm 1-1-m and 6.68 (MV) (for CSIRO-Mk3-6-0 Tables 1 and 2; Figure 9).
For RCP 8.5 mid-century, the CCVI scores averaged 6.19 (MV) for NorESM1-M;
6.27(MV) for bcc-csm 1-1-m and 6.86 (MV) for CSIRO-Mk3-6-0 (Tables 1 and 2; Figure
10). For RCP 8.5 end-century, the CCVI scores averaged 7.36 (HV) for NorESM1-M; 7.08
(HV) for bcc-csm 1-1-m and 7.52 (HV) for CSIRO-Mk3-6-0 (Tables 1 and 2; Figure 11).
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Figure 9. Pacific Lamprey Climate Change Vulnerability Index simulations. Comparison for three Global Climate
Models for end-century and Representative Concentration Pathway 4.5.
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On average the CCVI scores increased from mid-century to end-century for all of the
GCMs. In RCP 4.5 for bcc-csm 1-1-m and NORESM1-M, these score changes result in a
category increase from MV to HV. However, in RCP 8.5 the CCVI scores are high start-
ing in mid-century so the category remains in HV for the end-century. When we eval-
uated the results by emission scenario, on average the CCVI scores increased from RCP
4.5 to 8.5 for all of the GCMs. In mid-century on average, these score changes resulted in
a category increase from MV to HV for bcc-csm 1-1-m and NORESM1-M. However, for
CSIRO-Mk3-6-0 the CCVI scores are high starting in RCP 4.5 so the category remains in
HV for RCP 8.5. In end-century on average, the CCVI scores are high starting in RCP
4.5 so the category remains in HV for RCP 8.5.
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Figure 10. Pacific Lamprey Climate Change Vulnerability Index simulations. Comparison for three Global Climate
Models for mid-century and Representative Concentration Pathway 8.5.
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Figure 11. Pacific Lamprey Climate Change Vulnerability Index simulations. Comparison for three Global Climate
Models for end-century and Representative Concentration Pathway 8.5.
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Discussion

Pacific Lamprey abundance is well below historical levels and distribution has contracted
within the U.S. range (Wang and Schaller 2015). One of the key areas of uncertainty was
the impact of climate change on Pacific Lamprey and how these effects would influence
the priorities for restoration actions (Luzier et al. 2011; Goodman and Reid 2012). The
study demonstrated that lamprey populations generally became increasingly vulnerable
when going from greenhouse emission scenario RCP 4.5 to RCP 8.5 in all three GCMs
for both mid-century and end-century. If we continue to observe greenhouse gas emission
levels associated with the RCP 8.5, Pacific Lamprey will be at greater risk to climate
change impacts.

In the pilot study of Pacific Lamprey climate change vulnerability, the input data were
from the CMIP3 ensemble GCM for the A1b and A2 emission scenarios. Since then, the
IPCC generated new projections in the CMIP5 project for ten different GCMs. We were
able to modify the NatureServe CCVI calculator to accommodate the more recent climate
predictions from the IPCC. We used the downscaled information from their climate study
and customized the calculator to more directly characterize hydrologic and stream tem-
perature changes in 15 rivers occupied by Pacific Lamprey in the western U.S. These
stream temperature and hydrologic factors were used in assessing climate change vulner-
ability because they typically influence survival and productivity of aquatic species
(Holmes and Lin 1994; Holmes and Youson 1998; Scheuerell et al. 2009; Petrosky and
Schaller 2010; Potter and Huggins 1973). We believe our modified tool for calculating
CCVI provided an improvement over approaches that purely use professional judgment
or indirect measures of environmental change such as air temperature and moisture indi-
ces. By evaluating basin specific changes in stream temperature and hydrologic conditions
due to climate change, this approach more directly assessed the climate change impacts to
Pacific Lamprey. Compared to the pilot study, we were able to assess climate change vul-
nerability at a basin scale that better matches with downscaled hydrologic information
and is more spatially informative for identifying stream restoration actions.

We greatly improved the efficiency of the model by developing the capability to simul-
taneously run simulations for multiple basins, carbon emission scenarios and time peri-
ods. This allowed us to directly compare the CCVI results among basins over time under
different carbon emission scenarios.

In order to modify the model from using air temperature to directly incorporating
stream temperature, we conducted a sensitivity analysis to optimize model performance.
The majority of the 15 basins had no or small difference in CCVI score for bcc-csm 1-1-m
at the upper end of the temperature exposure score of 0.7 and at the 95th percentile of
historical temperature; therefore, we used this more conservative model structure for all
simulations and are confident that we did not overestimate the risk levels.

We believe the three GCMs used in this study provided reasonable contrasts to bound
projected future exposure conditions over the range of basins we examined, because the
results were generally consistent with NORESM1-M being the most optimistic and
CSIRO-Mk3-6-0 being the most pessimistic. The CCVI scores increased from mid-century
to end-century for all three GCMs. One exception occurred for CSIRO-Mk3-6-0 in the
Yakima basin where the CCVI decreased in risk category from EV to HV under the RCP
4.5 scenario from mid-century to end-century (Table 2). This exception was due to the
anomaly that hydrologic timing was more similar to that of the historical hydrologic tim-
ing for end-century than for the mid-century; resulting in a lower CCVI score for the
Yakima basin only. Regardless of the GCM or geographic location of the HUC, Pacific
Lamprey vulnerability to climate change exhibited increases from mid-century to end-
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century. By the end of century, the projections of stream temperature and hydrologic
change are large for all GCMs, therefore yielding similar vulnerability scores. Because we
observe this consistent pattern of increasing risk over time, we recommend that restor-
ation efforts should focus on actions that address key threats such as passage barriers and
dewatering and floodplain degradation. In order to reduce this risk by end-century, these
actions should be implemented early in the mid-century. These types of restoration
actions could address passage barriers and dewatering threats in a shorter time span, than
other types of actions that may take decades to restore channel or stream function.

In all three GCMs, the Umpqua and Yakima were the most vulnerable HUCs. Their
CCVIs were in the EV risk category for the 8.5 emission scenarios by the end-century.
The Umpqua had relatively low variation (compared to the other HUCs) in its historical
stream temperature and hydrologic timing, which contributed to the high CCVI score.
The impact of where anthropogenic barriers are located relative to historical lamprey dis-
tribution in the Yakima HUC appears to have played a large role in the high CCVI score.

The Skagit, Methow, Asotin and Selway were the next most vulnerable HUCs. In the
majority of simulations for the three GCMs in the 8.5 emission scenarios, their CCVIs go
to HV risk category by the end-century. The Skagit also had relatively low variation (com-
pared to the other HUCs) in its historical stream temperature and hydrologic timing
compared to projected values under climate change which contributed to the higher
CCVI score. The impact of where anthropogenic barriers is located relative to historical
lamprey distribution in the Asotin and Selway HUCs appears to have played a large role
in their higher CCVI scores. The Methow had both low variation in historical hydrologic
timing and impacts from anthropogenic barriers, which contributed to its higher
CCVI score.

The most stable HUC is the Klickitat, where the CCVIs are PS for all GCMs, RCPs
and time periods. The Klickitat had wide variation in historical stream temperature and
relatively less impact from anthropogenic barriers. Additionally, there is not a lot of
change predicted for hydrologic timing through the end-century for both RCP 4.5
and 8.5.

The next most stable HUCs are Sandy, Tualatin, Chehalis, Necanicum, Umatilla, Smith
and Eel; where the CCVIs stay in MV from mid- century to end-century in both 4.5 and
8.5 emission scenarios for all three GCMs (Table 2). All of these HUCs have more histor-
ical variation in stream temperature and hydrologic timing compared to the HUCs show-
ing more vulnerability to climate change. Even though the Umatilla has similar impact
from anthropogenic barriers when compared to HUCs with higher CCVI scores, it is rela-
tively less vulnerable due to high historical variation in stream temperature. If a lamprey
population historically experienced a large variation in stream temperature, in the CCVI
construct the population would be less sensitive to projected change than a population
that historically experienced much smaller variation in stream temperature.

When we looked for a pattern of vulnerability scores from northern to southern lati-
tudes, there was no obvious pattern. However, the results from this study suggest that cli-
mate change impacts to Pacific Lamprey vulnerability are magnified in highly altered
rivers. Within the Columbia River Basin the least vulnerable HUCs (Klickitat, Sandy,
Tualatin, Umatilla) were downstream of the majority of mainstem hydroelectric facilities.
Lamprey in the upper basins need to navigate through 8–9 mainstem dams and reservoirs
on their upstream and downstream migrations. Similarly, in coastal areas the least vulner-
able HUCs (Smith, Eel and Necanicum) were located in rivers with fewer main-
stem dams.
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How can CCVI information help inform restoration priorities?

Our results reveal that the Umpqua HUC consistently exhibited the highest level of cli-
mate change vulnerability for all three GCMs and both emission scenarios. The Umpqua
HUC is included in the South Coast Oregon Regional Implementation Plan (RIP) of the
Pacific Lamprey Conservation Agreement (Coates and Poirier 2017).

Here we provide an example of how the CCVI study can be coupled with RIP recom-
mendations to identify priority and timing of restoration work and projects. In the RIP,
the following key threats have been identified for the Umpqua:

Dewatering and flow management

Water withdrawals for irrigation, municipal, or residential purposes leave many water-
sheds in the South Coast sub-region dewatered or with inadequate flow during summer
and fall months. In recent years, early cessation of rains, below average snow packs, and
above average air temperature have further contributed to reduced stream flows in much
of the region. Low flow conditions may reduce spawning habitat availability, prevent
access to backwater or side channel habitats, create low water barriers, and may contrib-
ute to mortality if incubating eggs or burrowing larvae are dewatered or exposed to a
high temperature or low oxygen environment.

Stream and floodplain degradation

Stream and floodplain degradation is widespread throughout the South Coast sub-region.
Within lowlands, wetlands and side channels have been channelized, diked, diverted or
drained to prevent flooding, create farmland or pastures and provide land for commercial
and residential development. In upland areas, historical and ongoing timber practices,
agriculture, road construction and urbanization have deforested or altered the function
and diversity of riparian vegetation. Suction dredge mining is of particular concern in the
South Umpqua, Umpqua and Illinois River. This practice may increase sedimentation and
turbidity, alter stream channel topography, disturb and destabilize spawning and rearing
habitat, kill incubating eggs and larvae, and may re-suspend contaminants such as mer-
cury or other heavy metals in the water body.

Large-scale salmonid restoration programs are currently increasing instream physical
structure and repairing riparian vegetation in rivers of the west where Pacific Lamprey
inhabit (Budy and Schaller 2007; Wang and Schaller 2015). In order to mitigate the risk
from climate change toward the end of century, additional actions that expeditiously
address gaps in lamprey restoration will be prioritized. In the Umpqua, actions that can
increase flow, create backwater habitat, restore riparian vegetation that increases stream
shading (leading to decreased stream temperature) (Wondzell et al. 2019) and reduce
stream and floodplain degradation may have a higher likelihood of mitigating the increas-
ing risk from climate change impacts.

All 15 basins from the CCVI study have corresponding RIPs. A framework could be
developed from the Umpqua example on how to couple CCVI results with RIPs to sys-
tematically and consistently inform restoration priorities and monitoring and evalu-
ation needs.

The present CCVI modeling covers 15 basins of the western U.S., which represent a
large geographic scope of Pacific Lamprey distribution. However, now that additional
downscaled climate change information is available; the analysis can be expanded to
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additional basins and may possibly change future CCVI scores for populations across
the range.

We applied our modified Climate Change Vulnerability Index tool to consistently score
the vulnerability of Pacific Lamprey to future climate change and found that if greenhouse
gas emission levels associated with the RCP 8.5 are realized, Pacific Lamprey will be at
greater risk to climate change impacts. Increases in heat trapping gases, from worldwide
carbon emissions, accumulate in the ocean as increased ocean heat content (Lijing et al.
2019). Recent empirical information, from an expanded ocean monitoring system, has
demonstrated a sharp increase in heat content over the last decade that is consistent with
model projections from the RCP 8.5 scenario (Lijing et al. 2019). These changes also
negatively impact inland stream temperatures and hydrologic conditions that affect Pacific
Lamprey and other freshwater fishes. In order to reduce these risks to Pacific Lamprey,
along with maintaining extensive long-term salmon restoration actions in these basins,
additional restoration actions (that fill the gaps in lamprey restoration needs) that rapidly
and effectively reduce the impact of existing threats should be given priority.
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